AKIP1, a Cardiac Hypertrophy Induced Protein that Stimulates Cardiomyocyte Growth via the Akt Pathway
نویسندگان
چکیده
Cardiac adaptation to unremitting physiological stress typically involves hypertrophic growth of cardiomyocytes, a compensatory response that often fails and causes heart disease. Gene array analysis identified AKIP1 (A Kinase Interacting Protein 1) as a hypertrophic gene and we therefore hypothesized a potential role in the hypertrophic response. We show for the first time that both AKIP1 mRNA and protein levels increased in hypertrophic cardiomyocytes under conditions of sustained cardiac stress, including pressure overload and after myocardial infarction and in vitro in phenylephrine (PE) stimulated neonatal rat ventricular cardiomyocytes (NRVCs). AKIP1 overexpression in NRVCs markedly stimulated hypertrophic growth responses, including significantly increased cell size, augmented cytoskeletal organization and protein synthesis. Although, AKIP1 was not essential for PE induced hypertrophy in NRVCs, it did potentiate neurohormonal induced protein synthesis. AKIP1 did, however, not induce expression of pathological marker genes like ANP and β-MHC. ERK and Akt kinase signaling pathways have been linked to hypertrophy and AKIP1 specifically induced phosphorylation of Akt. This phosphorylation of Akt was essential for activation of ribosomal rpS6 and translation elongation factor eEF2 and this readily explains the increased protein synthesis. Akt inhibition fully blocked AKIP1 induced hypertrophy, showing that this pathway is critically involved. In conclusion, our results show that AKIP1 is induced in hypertrophic hearts and can stimulate adaptive cardiomyocyte growth, which involves Akt signaling.
منابع مشابه
Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملDual actions of the Galpha(q) agonist Pasteurella multocida toxin to promote cardiomyocyte hypertrophy and enhance apoptosis susceptibility.
Previous attempts to delineate the consequences of Galpha (q) activation in cardiomyocytes relied largely on molecular strategies in cultures or transgenic mice. Modest levels of wild-type Galpha(q) overexpression induce stable cardiac hypertrophy, whereas intense Galpha(q) stimulation induces cardiomyocyte apoptosis. The precise mechanism(s) whereby traditional targets of Galpha (q) subunits t...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2013